
Quality Assurance

Ammar Joukhadar

Mhd. Abou Zliekha

Samer Al-Moubayed

Bashar Awad

Information Technology Faculty, Damascus University

ammarj@scs-net.org

Abstract

E-business systems involve a large number of non

functional requirements, such as performance,

distribution, reliability, security, scalability, auditing,

fail over, fault tolerance, resuming, clustering/load

balancing, portability, accessibility, usability, etc.

Such requirements increase the complexity of the

system, and depending on programmers’ experience this

may reduce dramatically code quality.

Different techniques can be applied to ameliorate

code quality; this includes applying some standard

design pattern, decomposing code into a set of modules,

applying AOP techniques, using generic programming

techniques, or using code generators.

All of these techniques are very important and useful,

but are not sufficient. We still need to write a minimum

of manual code, so human resources remain the major

factor that affects code quality.

This paper addresses the problem concerning the

quality of manual code. What is code quality? What is

the effect of a bad code quality on the program lifecycle,

and how to assure this quality?

We propose a tool that allows analyzing code in order

to satisfy a set of quality directions. These directions can

be added dynamically with no need to modify the code.

1. Introduction

1.1 Why we need to assure quality of software

As software development is a manual work, most of

the mistakes are caused by the programmers:

 Programmers may get bored or tired. This will

affect their programming abilities, so the code

quality will vary consequently according to the

programmer.

 Junior programmers in companies will take a lot

of time to reach the company’s standards, and

best practices. During this time they will cost the

company a lot of time and effort to manually

revise their code. So signor programmers have to

verify the code of junior programmers, and all

resources will be busy.

This is why we need a quality assurance tools to

automatically verify and assure the code quality

regardless of the programmer’s ability.

1.2 What is the Quality of software?

Quality of software covers all non functional features

of the software such as reliability, security, robustness,

performance, memory management, scalability, usability,

platform independence, etc.

Distributed applications need also other non

functional requirement such as distribution, clustering,

non concurrent accesses, etc.

There are many tools that allow us to check programs

in order to detect quality problems and fix theme. Some

of theme bench an application to measure its

performance such as OpenSTA[1]

(http://www.opensta.com/) for web based applications.

Jbuilder/OptimizeIt Software allows detecting

performance bottlenecks and tuning applications.

Rational software (http://www.rational.com) allows testers

to automatically record the workload of 1 to 1000's of

virtual user sessions, create test scripts, execute test

sessions, and evaluate the summarized reports and

graphs. Beirekdar[2] offers a scalable way to verify

ergonomic quality for web applications.

All these methods are very useful and allow detecting

a wide range of general quality defects at compile time or

at run time. Our approach consists of dividing quality

check procedure into three phases:

1) Analysis and design time: using a framework,

such as Spring [3] [4], or Struts [5] [6] we can

reduce code size, make use of generic code, and

make use of some design pattern templates [7]

[8]. This phase will limit the number of possible

code quality degradation.

2) Compile time: we have built our own tools: (1)

an automatic verification tool which allow us to

check manually added code against a set of

directions, and (2) a specification tool which

allows us to introduce new framework specific

directions.

3) Compile or Run time: at this step market tools

will be efficient to detect general code quality

defects.

http://www.opensta.com/
http://www.rational.com)/

In this article we will focus on the second phase: a

code analyzer (verification) tool that reads the source

code and finds the quality errors within the code

depending on a quality rules that can be customized by

the user using the specification tools.

2. Context and overview of the system

A technical framework is a skeleton of semi finished

application. This application is based on some

predefined abstract design patterns. A user or a code

generator generates a code according to these patterns.

The programmer needs to fill in a kind of template

classes in order to complete the program.

In such a context we are not only interested by general

quality direction but also by specific ones (ie. we need to

be sure that not only Java rules are satisfied but also

framework ones). The user needs to add new directions

whenever his framework and best practices evolve.

2.1. Java Rules

Java quality rules are a set of rules for common

programming in Java; these rules are written by Sun or

have been collected by the experiences of java

programmers (see http://www.javapractices.com).

Such rules are important to assure the performance

and the understandability of the code. They allow us to

minimize the bugs at the testing phase as much as

possible.

Examples of such rules:

Category Code Convention

Rule Name Avoid changing condition variable in

loop body

Severity MEDIUM

Description

Reason Control variable should not be changed

inside the FOR loop body.

Example Violation

Class Test {

 void method() {

 for(int i=0; i < 100;i++) {

 i *= 2;

 }

 }

}

Correction

Class Test {

 void method() {

 for(int i=0; i < 100; i=i*2+1) {

 }

 }

}

Reference

Category Optimization

Rule Name Avoid Synchronized blocks

Severity CRITICAL

Description Avoid synchronized methods as much

as you can. If you cannot, synchronize

on methods rather than on code

blocks.

Reason …..

Example Violation

…..

Correction

….

Reference http://www-

2.cs.cmu.edu/~jch/java/speed.html

2.2. Framework rules

A framework (Spring [3] [4] or Struts [5] [6]) aims to

satisfy a set of design patterns such as MVC (Model

View Controller) [9][10], AOP (Aspect Oriented

Programming) [11][12], IoC (Inversion Of Control)

[13][14], Transparent persistence, etc.

It is important that the manually added code satisfies

also these patterns.

Examples of framework rules:

Category AOP

Rule Name Tracing

Severity High

Description Never use tracing inside business

methods they will be added by the AOP

engine

Reason This will complicate the maintenance

and the delivery if we change tracing

configuration or tracing module.

Example Violation

Class Test {

 void f() {

 Trace.in(“f”);

 <body>

 Trace.out(“f”)

}

Correction

Class Test {

 void f() {

 Trace.in(“f”);

 <body>

http://www-2.cs.cmu.edu/~jch/java/speed.html
http://www-2.cs.cmu.edu/~jch/java/speed.html

 Trace.out(“f”)

}

Reference

Category Transparent persistence

Rule Name Isolation

Severity: High

Description Usage of D.B. connection is not

allowed

Reason: Direct access to DB by different

programmer may influence the

performance of the, may cause

concurrent access and may affect the

readability of the program.

Example Violation

void update(object) {

 Connection=getConnection();

 Sql=prepareSql();

 Statement=

 connection.prepareStatement(sql);

 Statement.

execute(objet,getParameters()).

}

Correction

void update(object) {

TransparentPersistence.

 update(object);

}

Reference …

2.2. Requirement

The goal of quality assurance tools is to simplify the

manual task of the programmer in order to ameliorate

quality, so these tools must verify some conditions in

order to be useful:

 Adding new rules must be simple and

extendable; the system must provide different

utilities that ease the building of new rules and

integrating them into the system

 The design of new rule must be irrelative to the

data structure of the system; it must be relative

to the rule design only.

 The system must give different levels of error

and warning reporting:

- Error : Critical

- Error: Medium

- Error: Low

- Warning

 The user must also be able to choose the level

of errors needed to be checked.

3. Problem Specification

To understand the problem, we will present an

example of a quality rule to be able to understand the

process of quality checking.

We will take, for example, the rule “Avoid changing

condition variable in loop body”.

The rule designer must try to figure out how to find

such an error. By looking closer at the error pattern, it is

clear that the first step is to look for a (for loop) inside a

method. The Second step is to save the initialization

variables of the (for loop). The final step is to take each

statement inside the for-block and make sure that those

initialization variables will not be changed by these

statements.

Notice that variable can be changed in many ways;

using assignment statement, or method call.

We proposed to specify this case using a state diagram

(figure 1). The first state designate the fact that we are

waiting for a “for loop”. When we receive an event that

indicates that a “for loop” is detected, an action will save

the “loop variable”. Then we pass to a state where we are

waiting for any statement inside the body of the loop.

When receiving an event that a statement is detected,

an action will verify that this statement will not change

the loop variable. We pass to the end state when

receiving an event indicating that the end of the loop is

reached.

The parser is the only component that can send such

events. Our initial objective requires that adding new

rules does not affect the written code. So parser must

send generic events and not events that are specific to

each rule.

Figure 1. Quality verification steps.

Find for loop

Save the init
Variables

For each statement
check the changed

variables

For(int i=0;i<10;i++)
{

x+=array[i]*10;

i+=2;

…….
}

stop

4. The Strategy

Our strategy has three steps:

1- Representing rules by a finite automaton and

adding them to the system.

2- Developing a generic two pass parser:

a. In the first pass the parser collects

some useful information about

methods; such as:

 which parameters are modified in the

method,

 which input or output devices are

used inside that method.

 It makes all the usful information

available for the different rules at

runtime.

b. In a second pass the parser looks for

some kind of code patterns and throws

events indicating that such a pattern is

detected.

5. Rule Representation

A rule is represented by a finite automaton where:

1- States represent the different phases of the

detection process such as detecting a loop, listen

to statements, and finish listening.

2- Events are sent by the parser and they indicate the

start and the end of a pattern or non terminal.

These events contain some parameters according

to the detected event. For example the event that

indicate the starting of a for-loop must passes the

initialization variables, their initial values, the

loop condition, and the increment statement.

3- Three action types are available:

 Listen to an event.

 Stop listening to an event.

 Fire quality violation alert.

6. Generic Events Representation

A code is represented by a context free grammar using

some notation such as BNF notation. These grammars

are composed of a set of rules. The left side of the rule is

a non terminal which represents the rule name. The right

side consists of terminals and non terminals and called

reduction.

For example the following grammar can represent a

statement:

<statement> :- <assignment> | <for> | <bloc> | <if>

<assignment> :- <var> = <exp>

<if> :- if (<exp>) <statement> else <statement>

<bloc> :- { <statement>* }

<for> :- for(<type> <var>= <exp>; <condition>;

 <inc>) <statement>

.

.

Non terminals are surrounded by <>. Terminals

appear free in the grammar such as =, if, else, for, etc.

When the parser reaches the start of a reduction of a

grammar it sends an event and passes the terminal that

indicates the start of that reduction to the corresponding

listener.

Rules can listen to non terminals by specifying the

name of that non terminal.

 Figure(2) illustrates the architecture of our system.

Figure 2. System architecture

The parser takes a Java code as input and sends the

corresponding event to an event manager. Rules register

their needs in the event manager.

The event manager receives events from the parser

and notifies only rules that required listening to this

event.

The system is implemented using Java programming

language. Rules which are a kind of state diagrams can

be edited using a normal UML editor. We have used

“magic draw”.

The system was plugged into JBuilder developing

environment in order to be easy to access. It can be

plugged into any pluggable environment.

7. Conclusion

Quality is a main aspect of a program. It affects the

development time, the cost, the scalability and the

usability. Frameworks can help to satisfy quality but they

are not sufficient.

This paper presented an automatic tool for quality

verification. This tool allows adding new quality

directions dynamically. Directions are represented by a

finite state automaton where events are the starting and

Events

Rule1

Rule2

Rulen

Fire Event

Listen

ending of CFG non terminals. A generic parser allows

the extraction of these events and sending theme to

listening rules.

Current work aims to develop a framework that allows

minimizing the quantity of manually added code.

8. References

[1] Clinton. Sprauve, “Implementing a Performance Test

Strategy Using Open Source Software”. PSQT/PSTT 2004

East Conference.

[2] Abdo Beirekdar, “A Methodology for Automating Guidline

Review of Web Sites”. Thesis of Facultés Universitaires Notre-

Dame de la Paix, 2004.

[3] Eugene Kuleshov, “Using the Spring AOP Framework with

EJB Components”, dev2dev 2005,

http://dev2dev.bea.com/pub/a/2005/12/spring-aop-with-

ejb.html

[4] RICK HIGHTOWER, “An Introduction to Spring”, Java
Developer's Journal 2005.

[5] Casey Kochmer, “Introduction to Struts”, JSP Insider

magazine, April 2001.

http://www.jspinsider.com/tutorials/jsp/struts/strutsintro.view

[6] Peter Varhol, “Applying the MVC Design Pattern Using

Struts”, javapro magazine, may 2002,

http://www.fawcette.com/javapro/2002_05/magazine/columns/

weblication/default.asp.

[7] Firesmith, Donald G. , Deugo, Dwight , “Applying Design

Patterns in Java," in Java Gems book, Cambridge University

Press, 1998.

[8] Erich Gamma, Richard Helm, Ralph Johnson, and John

Vlissides, “Design patterns: Abstraction and reuse of object -

oriented design”, In European Conference on Object-Oriented

Programming, 1993, pages 406-431.

[9] Wei-Tek Tsai, Yongzhong Tu, Weiguang Shao, Ezra

Ebner, “Testing Extensible Design Patterns in Object-Oriented

Frameworks through Scenario Templates”, COMPSAC 1999,

pages 166-171.

[10] Sergio Antoy, Michael Hanus, “Functional Logic Design

Patterns”, FLOPS 2002, pages 67-87.

[11] Nadir Gulzar, Kartik Ganeshan, “Practical J2EE

Application Architecture”, 2003, McGraw-Hill Osborne

Media.

[12] Karl Lieberherr, Doug Orleans, and Johan Ovlinger,

“Aspect-Oriented Programming with Adaptive Methods”, NU-

CCS-2001-02, 15 pages.

[13] Martin Fowler, “Inversion of Control Containers and the

Dependency Injection pattern”,

http://martinfowler.com/articles/injection.html.

[14] Christian Queinnec, “Inverting back the inversion of

control or, continuations versus page-centric programming”,

SIGPLAN Notices 38(2), pages 57-64, 2003

http://www.informatik.uni-trier.de/~ley/db/journals/sigplan/sigplan38.html#Queinnec03

